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Chapter I

Alrernative Alpebras
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The varicty of alternative algebras
ftacall that a linear alpehra A over a unltal, commutatlve,
assoeiative ring of scalars ¢ consistas of a unital ¢-module (usually
soted by the same aywbol A) together with a ¢-hilinﬁar multiplication
o A, which is denoted by x'y or simply xy. Hultiplicatlon nesd not he
scoelarive, A mare old-fashioned way of saying that mulriplication’

15 bilinear 18 to say it is left and right distributive
x'{v+z) = xvy + xvz, {(y+z)ex = yox + 2-%
and eommutes with scalars

a(x-y) = (ax) ¥y = x- (ay) .

nok
“wa fact that multiplication need associate means we must be scrupulous
Fas

_n insercing parentheses: (wxy)z is not the same as x(yz).

An algebra 1s left alternative if it satisfies the left altcrnative

AW

(1.1} xz*.v = x{xy)

(where we abbreviate xx by xz}

" “.r all elements X,¥. Similarly, an algebra is right alternative if

.t sarisfiecs the ripght alternative law

Vi 2) 3‘“--=2 = (yx}x .

an altsrnative algebra is one which is both left and right alternative

"rwo-gided" alrernative).
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The defining identities (1,1) and (1.2} are linear in y but
cuadracic Iin the variable %, THE BASIC INSTINCT OF A NONASSOCTATIVE
: GEBRAIST WHEMN FACED WITH AN IDEWTITY IS: LINEARIZE! As indicated
1 conngctiun with the Nagata=Higman Thénrem in~Part 1, linearizarcion
rsually requires certain hypotheses (such as that ¢ be a field with
.nough elements). lowever, QUADRATIC IDENTITIES CAN ALWAYS BE
L LHEARIEZED.

Linearization of a quadratic function £(x) consists merely in
‘arming the polarized fomm f(xty) - f£(x) - £(y). 1In the present
.i uatien 1t works as follows. For any X%,¥,z in an alternative algebra
. we have (x+z}2y = (xt+z){(xtz)y} as well as xzy = x(xy) and ZZY = z(zv).
Aubtracting the last two from the first one (using bilinearity of

sltdpliication) ylelds
i R (xz+zx)y = =lzy) + z(xy) .

.t 48 essential that you practice until you can "read off" this
linearization directly from (1.1). What is involved is replacing one
% at & time by a z in all possible ways.

A gimilar linearization of (1.2) vields
(2.2") y{xztzx) = (yx)z + (yz)=x .

soase linearized formulas need not be memorized; you need only memorize
¢he basic formulas (1.1}, (1.2), and the process of linearizatrien.
The linearized formulas give Telations among three arbitrary

sariahles. We can obtain less complicated formulas, involving fewer




veriablea, 1f we specialize certaln of the arguments. For example,

we could sse that happens when we set z = x!

(xxtux)y = =x{xy) + x(xy) .

This 1s Just 2 xzy = 2 x(xy), twlce what we atarted with. In general
one pets no new Information 1f one gtarts with a homogeneous {dentity,
isnearizes % to x and z, then sets z = x. To get new information, try

getting vy = x:
fxz+zx}x = xlzx) + z(xx) .

Kew from (1.2) we already know (zx)x = z(xx), so subtracting this

gives the middle alternative law (better known as the flexible 1aw)

£1.3) [ (xz)x = n(=x) .

Acy alsebra satisfying the flexible law is called a flexible algebra;

we have just shown that an alternative algebra is automatically flexible.

Like the other mlternative laws, the flexible law 1s a weak form of the

associative law (xyhz = x(vz), but it is also a weak form of commuta-

tivity: any associative or commutative algebra is automatically flexible,
A very important concept is that of the associafor [®%,%v,2] of

three elements of a nonassociative algebra, defined by

[%,¥7,2] = (xv)z - x(yz) .

e asscciator measures how far x,y,z are f[rom assoclating, since it
is just the difference between the two ways (xy)z and x(yz) of asso-

elating x,¥,2 in the given order. An alpebra is associative if
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‘xv)z = x(yz) for all x,y,z, which ls equivalent to the condition

¢rnat all assoclators vanish.

In cthe same way the commutator

[x,7] = xy - yx

qeasures how far x and vy are from commuting: xy = yx 1ff [x,y] = 0.
4n algebra 1s commutative if xy = yx for all x,¥; this is equivalent
to the condivien that all commutators wvanish.

The associator or commutator allows us to express a difference
4% two terms by means of one symbol. The alternative laws may be

suceinctly expressed in terms of assoclators as

(i.1a) [x,x,¥] = 0 (left alternativity)
{L.2a) [¥,%,%] = 0 (right alternativity)
(1.3a) [x,7,%] = 0 . (flexibilicy)

Ihis just means the associator [x,y,z] is an alternating function af

its argumcnts. (Becall that a muliilinear function f{xl,---,xn} is
|

alternating if it wvanisles whenever two of its arguments ceincide.

4= we saw in the section on polynomial identities in Part 1, this

implies f changes sign under permutation of its arguments, and con-

versely 1f A has no 2-torsion then a function which changes sign under

permutations is necessarily alternating.)

1.4 (Alternating Theorem) An alpgebra is alternative 1ff the associa-

tor [%,y,z] is an alternating function of its arguments, %]
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“him, of course, is the teason for the name "alternative algebra'.
Since associative algebras are defined by the identity [x,¥,z] =

3, they clearly satlsfy (l.la)-(1.3a), so
1.5 Proposition. Any associative algebra 1s alternative. L

We will see that in some sense alternative algebras are not far removed

from associative alpebras,
Another convenlent way of phrasing identities is to formulate them

as operator-identities; If L:: denotes the left mulbiplication operator
: Lx{'_‘.'} = xey
and 'R.K the right multiplication operator
R (y) = yrx

thien the alternative laws take the form

(1.1op) ' L, = Li (left alternativity)
x

(1.2op) I . Ry= Ri (right alternativity)
X

(1.3op) RL =LR or [Rk,Lx] = ) (flexibility)

This last flexible law allows us to introduce a "two-sided” multipli-

cation operator Hx by

Uﬁy =y or Ui = I&Hk = RxLx i




nia parentheses are needed In xyx by flexibility. The opérator Ux
is quadratic in the wvariable x (as opposcd to Lx and Rk’ which are

iinear in x). Thercfore we can linearize in x to get
U = 1 - - =LER +LR =RL +RL .
%Y why % ¥ xy yx xy ¥y x

it will alse be convenlent to denote the linecarization of the sguare

oy a clrecle,
2 2 2
Xey = (xty) - x" -y =xy + yx .

Producis UEY, Ux 1 x?, xa¥ will be called Jordan products (for reasons

Y
which will hecome clear in Part III).

Operator notation i# not oniy notationally elearer (there is one
lags warisble), but often conceptually clearer as well: witness the
apova,

Note, howewver, that to interpret an element Identity as an operator,
orie wvariable must appear linearly. If more than one variahle appears
linearly, the element identity can be interpreted in mere than one way
as an operator idemtity. For example, the linearized left alternative

1aw {x§+zx}y = x(zy) + z(xy} can be viewed as an operator identity
sering on ¥
L =L = LL +L L
Wz z %

o T xetEx

{this 1is just a linearization of (l.lep), so is neot surprising), or om

&

| +R ) = L R+ R_
| R (L R) = LR +R
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{which ig surprising), or on x

Ey{Lz+Rz} = Rzy + LZR}r
{rthie is the same as the previous relatioen wit1:1 x and z interchanged).
This method ﬁf pasaing back and forth between elements and
operators, and reinterpreting an operator identity on one variable
as an operator identity on another warlable, is a standard technique

in nonassoclative alpebras.
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1.5

Exercises

Suppose we have an identity f(x,x,y) = 0 where f(x,y,z} is some
trilinear function from a module M to a module N (for example,
f(x,y,z) = x(yz) or £(x,y,2) = (xydz - x{yz) from A to A).

Guess what the linearization of this identity is, then check it
by computing out f{x+z,x+z,y) - £(x,x,¥) - flz,z,¥).

Apply the previcus exercise to f(x,y,z} = [x,¥,2] and the left
altemative law [x,%x,¥y] = 0. Set y = x in the linearized
verslon. What do you get?

Prove [%,x] = 0 in all linear algebras. Linearize this in terms
of commutators; what does the linearizacion say in termsluf
elamentks?

Linearize the right alternative law (1.20p), subtract the operat
identity RT(LH+RHJ = Lxﬁy + ny' What do you get as an Operator
identity? Let it act on z and write the result as an element
identity in x,¥,z. Reinterpret as an operator identity acting
on Y.

Iinearize the fnllq@ing rel&tiunsin xz  x{(zy)x} = (xz){yx),
yxty = (yx) Gd, Gydlzlxy)) = xly(zx)y} . [x.y,x] = 0, [x",y] =
o [%,¥] (where xey = xy + yx).

In an arbltrary linear algebra show [x,yz] - [x,y¥lz = ylx,z] =
~ [%,¥,2] *+ [ys#:2) - [¥y,=,5]. Conclude that in an alternative
algebra [x,yz] - [x.ylz - y[x,2] = 3[y,x,z].

In an arbitrary linear algebra show (®ay)z = y(xez) - [x,¥,z] =

[¥.,z,x].

or
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1,10
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1-4
Exercizes (Continued)

Sshow [=,yez] + [y,zex] + [2,%ey] = 0 in any flexible algebra.

Show [x,%,v] = [v,yx,x] = 0 In an alternative algebrn.. Linearlze
to show [x,xv.z] = [x,v,xz] and [x,yx,z] = [x%,v,zx].

Interpret the assoclative law (xy)z = x(yz)} in three different
ways as an cperator identity.

Interpret the linecarized right alternative law in three different
ways as an operator identity. Do the same for the middle alterna-
tive law.

Show that any alternative algebra over ¢ spanned by 4 eloments is

necessarily associative,
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